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Abstract. Motivated by their increasing prevalence, we study outcomes when competing
sellers use machine learning algorithms to run real-time dynamic price experiments. These
algorithms are often misspecified, ignoring the effect of factors outside their control, for
example, competitors’ prices. We show that the long-run prices depend on the infor-
mational value (or signal-to-noise ratio) of price experiments: if low, the long-run prices are
consistent with the static Nash equilibrium of the corresponding full information setting.
However, if high, the long-run prices are supra-competitive—the full information joint
monopoly outcome is possible. We show that this occurs via a novel channel: competitors’
algorithms’ prices end up running correlated experiments. Therefore, sellers’misspecified
models overestimate the own price sensitivity, resulting in higher prices. We discuss the
implications on competition policy.
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1. Introduction
A defining feature of many of the most profitable
companies in the 21st century is scale. For example,
the song catalog for themusic service Spotify contains
more than 50 million songs.1 The online retailer
Amazon.com sells close to 120 million unique prod-
ucts.2 The movie streaming service Netflix has more
than 130 million subscribing customers.3 This pro-
liferation of products and customers would be impos-
sible tomanage if humans did not have help in the form
of information technology. Large-scale databases and
algorithms for decision making are now an essential
ingredient of high-tech business management.

The benefits of this revolution are clear. For ex-
ample, one consequence of this technology has been
the creation of themost valuable companies in human
history. At the same time, consumers benefit from
recommendation systems engineered for customized
product assortments, ease of purchase, peer reviews,
online price comparisons, etc. An obvious question to
ask is if there are any downsides to algorithmic
business management.

In this paper, we analyze a novel, unforeseen
consequence of algorithmic management that has re-
ceived some attention in both the popular press and
research: the possibility that companies may end up
colluding through algorithms. The context we study is

pricing: an area in which online retailers increasingly
use machine learning algorithms (The White House
2015). These algorithms set real-time prices for an
array of products for which the retailer has incom-
plete demand information. In this setting, each al-
gorithm is an automated field experiment that learns
about potential profit (“exploration”) and sets the
product’s profit-maximizing price (“exploitation”).
These algorithms are calledmultiarmedbandits (MABs;
each “arm” is a price). Given the complexity and scale
of online retail, field experiments in this context are
typically analyzed assuming the focal firm is a mo-
nopolist (or, alternatively, best-responding to the
fixed priced of competitors). Chen et al. (2016) study
the best-selling product on Amazon.com and esti-
mate only 2.4% of sellers run pricing algorithms that
consider competitive prices. Recent academic em-
pirical pricing studies, including Cheung et al. (2017),
Dubé and Misra (2017), and Misra et al. (2019), as-
sume no competitive response to pricing decisions.4

Several theoretical investigations into the use of dynamic
pricing algorithms also assume the firm is a monopoly,
for example, Broder and Rusmevichientong (2012),
Handel and Misra (2015), and Ban and Keskin (2021).
This assumption greatly reduces complexity: it

simplifies the problem to that of a single choice var-
iable (own price) and estimating a profit curve, which is
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only a function of the firm’s own price. A consequence
of this simplicity is that theoretically optimal algo-
rithms include index algorithms (Gittins 1989, Weber
1992, Auer et al. 2002). These algorithms calculate an
index for every arm based on the past performance of
the arm (mean, variance, and number of times played).
In each round, the algorithmsimply selects the armwith
the highest current index.

In this paper, we analyze the outcome if competing
firms all use this independent multiarmed bandit
indexing algorithm as outlined—and act as if they are
in amonopolisticmarket—but, in reality, price into an
oligopolistic market. In keeping with the bandit anal-
ogy, we call pricing in each period an “experiment.” In
particular, we study what long-run prices would
result in such a setting. Of course, because a seller’s
demand (and, therefore, profit) at a particular price
depends on competitors’ prices, each seller’s implicit
statistical model is misspecified.

We show that the long-run prices that result de-
pend on the informational value (signal-to-noise ratio
or SNR) of the underlying pricing experiments. In
markets in which price experiments have low infor-
mation value, the resulting long-run prices are sta-
tistically indistinguishable from Nash equilibrium
prices, and the misspecified models achieve nearly
the first best profits. However, in markets in which
price experiments have high information value, market
prices are supra-competitive. We show that more in-
formative pricing experiments result in correlated price
experiments acrossfirms.Competitive prices, therefore,
become correlated unobservables in each firms’ pricing
algorithm. By not accounting for the existing com-
petitive pricing, each firm’s price sensitivity has an
upward bias, resulting in supra-competitive prices.

A growing body of literature has raised concerns
that algorithms might induce collusive pricing be-
havior; see, for example, the white paper from the
Organisation for Economic Co-operation and De-
velopment (2017) listing policymakers’ concerns and
the review article of Harrington (2018) on how com-
petition law should adapt. Recent influential papers,
such as Calvano et al. (2019, 2020), show that algo-
rithmic collusion can occur in settings in which firms
observe each other’s prices. We contribute to this
literature by identifying a novel channel/mechanism
by which such supra-competitive pricing may occur.
By contrast, in our setting, each algorithm/firm does
not observe competitors’ prices, a requirement in the
channels identified in the extant literature. We show
that collusion can materialize even in this case.

In the operations literature, our result is most
closely related to Cooper et al. (2015), who also show
non-Nash outcomes as the limit prices if duopoly
sellers set prices from a misspecified monopoly model.
The main difference between the papers is that our

algorithm considers optimal experimentation, balanc-
ing the benefits from learning and earning (reinforce-
ment learning), and Cooper et al. (2015) do not ex-
plicitly model experimentation (assumed exogenous)
and instead consider an estimation–optimization (cer-
tainty equivalence) algorithm by which prices are set
as the static optimal prices from a linear ordinary least
squares demand model.5 In terms of implications for
policy, Cooper et al. (2015) suggest that the possibility
of collusive prices depends on which parameters of a
linear demand model are commonly known by both
firms (this cannot be empirically tested). By contrast,
our results suggest that it hinges on the underlying
signal-to-noise ratio in the demand function, that is,
the stochasticity of underlying demand (which is
empirically testable). We provide a more detailed
discussion of the connection to this paper and other
prior research (on algorithmic collusion, dynamic
pricing, learning in games, behavioral game theory,
and algorithmic bias) in the online appendix.
We believe the identification of this novel channel is

useful not only for theory, but it also raises fresh
practical concerns for managers and policymakers.
In our setting, firms independently choose algo-
rithms that use misspecified models of the under-
lying demand system (firms’ algorithms assume they
are effectively monopolies although the true market
is oligopolistic). Each firm uses these algorithms
to structure “relevant learning” (Aghion et al. 1991) or
learning about profit at the most profit-relevant pri-
ces. Our results show that, when multiple firms
employ identical algorithms, then learning can be
focused away from competitive prices, resulting in
supra-competitive prices. Jointly, firms may have an
incentive to be “willfully misspecified.” The question
then, is whether all firms choosing such misspecified
models constitutes a concern for competition policy.
The remainder of this paper is organized as follows:

Section 2 describes the general setup and assump-
tions. Section 3 outlines our main results via a set of
simulations. Section 4 contains our theoretical results
(in a stylized setting) and lays out the mechanism by
which supra-competitive prices result. In Section 5,
we reanalyze Amazon.com pricing data from Chen
et al. (2016) and argue that the observed correlations
in prices are consistentwith our simulations. Section 6
concludes and discusses avenues for future research.

2. Competitive Bandits Setup
In this section, we explicitly state the key demand and
supply assumptions in our analysis. These assump-
tions define both the objective functions and the in-
formational assumptions for the agents. We consider
two symmetric, single-product firms with a constant
marginal cost (set to zero). Firms compete by setting
prices in each period.
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We assume that each firm’s demand is static and
stable, a common assumption in empirical and the-
oretical work and field experiments; see, for example,
Besbes and Zeevi (2009), Dubé and Misra (2017),
Misra et al. (2019), and Calvano et al. (2019). Static
demand rules out a large number of potential con-
sumer dynamics, such as preference learning, un-
certainty, strategic consumers, and stockpiling. These
assumptions are important in our setting as we focus
on the firms’ learning about the demand (equiva-
lently, profit) curve by price experimentation. If de-
mand is not static, then the pricing field experiment
would be biased by assumption.

We assume that demand is initially unknown to the
firms. We assume there is a discrete set of potential
prices P � {p1, p2, . . . pK} that each firm can set. The
formal results are for K � 2, but we show that similar
results are obtained for arbitrary values of K in
simulations. A period of the algorithm can be con-
sidered as a fixed interval of time (e.g., 15 minutes), as
is common in the operations research literature (Besbes
and Zeevi 2009), or a fixed number of consumers (e.g.,
100 consumers), as is common in the marketing lit-
erature (Misra et al. 2019). Upon setting a price
(running an experiment), the firm observes profit
(with sampling error) in that period but does not
observe the rival firm’s price and quantity sold. An
equivalent assumption is that the firm observes com-
petitors’ price/quantity but ignores these in its own
statistical model.

Notation is as follows: In period t, each firm j sets a
price pj,t ∈ P. The firm observes a resulting profit
πj,t ∈ R+. The additional complication is that, in our
setting, firms do not observe (or ignore the effect of)
competitors’ prices. That is to say that each firm’s
statistical model is πj,t � π∗(pj,t) + εj,t, where π∗() is the
true stable expected profit and εj,t is a small sample
error or noise from the experiment at time t. However,
in truth, πj,t � π∗(pj,t, p−j,t) + εj,t. This means that firms’
models are misspecified: they attribute the effect of
competitors’ prices (p−j,t) on their own profits to be
arising from noise from nature.

Viewing each possible price as an arm in an MAB
problem, we suppose that each firm runs an MAB
algorithm to balance learning for future and current
profits. The objective function of the algorithm is to
minimize (undiscounted) dynamic statistical regret,
defined as the difference between average profits
achieved with the algorithm and the ex post optimal
profits. The literature provides theoretical analysis
and mathematical guarantees of these algorithms.6

The bandit algorithm we use is the upper confi-
dence bound (UCB) algorithm, originally from Auer
(2002). This provides an asymptotically optimal non-
parametric MAB solution (Agrawal 1995, Auer et al.
2002): that is to say, (1) it is guaranteed to find the

optimal arm without any further assumptions in any
MAB problem, and (2) no other algorithm achieves
lower regret. In our context, this means that a mo-
nopoly seller using a UCB algorithm for pricing is
guaranteed to find themonopoly optimal price without
any parametric assumptions on the relationship be-
tween prices and profits. The idea of this kind of al-
gorithm is to maintain an index for each arm. The basic
algorithm, for each arm pk, at each period t tracks the
empirical average of the profit from that arm for πk,t
and the number of times that arm has been pulled nk,t.
The index of arm k at period t, Ik,t, is defined as πk,t +̅̅̅̅̅

2 ln t
nk,t

√
(the index of an arm that has never been pulled

is defined as ∞). In every period, the algorithm ex-
periments with the price with the current highest index,
randomizing if there is a tie.
Viewing the profit draws from a given arm as in-

dependent and identically distributed (i.i.d.) draws
from a distribution of unknown mean, this index
tracks the upper bound of a confidence interval of this
unknown mean. A simple concentration argument
tells us that, in period t, the true expected mean re-
ward of any arm k is lower than the current index Ik,t
with probability (1 − 1

t).
A price is, thus, experimented if either the empirical

average of past profits from that price is high (ex-
ploitation) or nk,t is low relative to t, that is, that price
has not been used sufficiently often to be confident
about its reward (exploration).

3. Simulation Results
In this section, we describe the details of our simu-
lations to test implications of independent competing
firms running the pricing algorithm.

3.1. Simulation Settings
For ourmain results, we consider the algorithm called
UCB-tuned.7 For each price (pk) in period t, we cal-
culate the index, defined as follows, and select the
price with the highest index:

Vk,t � π2
k,t − π̄2

k,t +
̅̅̅̅̅̅̅̅
2 log t
nk,t

√
,

UCB-tunedk,t � π̄k,t +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
log t
nk,t

min
1
4
,Vk,t

( )
,

√

where nk,t is the number of periods in which the firm
has charged price pk up to period t and π̄k,t is the
empirical mean of profits in those periods. In this
algorithm, Vk,t can be interpreted as the empirical
variance plus an exploration bonus that depends on
(decreases with) the number of times price pk has been
experimented with. Further, we account for the UCB
improvement (Auer and Ortner 2010), and we allow
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for armelimination.We eliminate an arm k if the upper
confidence bound of the arm is lower than the mean
minus exploration bonus (i.e., the “lower confidence
bound”) of another arm.

We consider a parametric data-generating process
and allow firms to run independent UCB algorithms.
To be explicit, the data-generating process is known
to us (the researchers) but not to the firms: the firms
run UCB, which is purely nonparametric. The UCB
algorithm considers (undiscounted) finite time regret;
this requires a prespecification of the number of pe-
riods in which the algorithm will be run.8 In all our
simulations, we consider the algorithms running for
two million periods and analyze the outcomes of the
last 1,000 periods as the “long run.”9

In the main simulation, we assume a linear de-
mand model:

d∗j pj, p−j
( ) � α − βpj + γp−j. (1)

Under this assumption, the competitive and joint
monopoly (i.e., collusive) prices can be analytically
computed. They are

Competitive : pD � α

2β − γ

Collusive : pM � α

2 β − γ
( ) .

In any experiment (t), a firm observes a noisy estimate
of the true profit, that is,

πt pj, p−j
( ) � pjd∗j pj, p−j

( ) + εj,t,

but their models are misspecified, so they think they
are observing

πt pj
( ) � pjd∗j pj

( ) + εj,t.

In our simulations, we set the values of α � 0.48,
β � 0.9, and γ � 0.6. With these values, the duopoly
and monopoly prices are PD � 0.4 and PM � 0.8. The
firms decide between 91 discrete prices between $0.10
and $1.00, that is, P � {0.10, 0.11, . . . , 0.99, 1.00}.

As we previewed earlier, our results suggest that
the long-run distribution of prices depends on the
informativeness of the price experiments, that is,
the magnitude of the noise. To that end, we vary the
distributional assumptions about the error term, εj,t.
In all simulations, we assume that εj,t ∼ U[− 1

δ ,
1
δ],

where we vary the value of δ across simulations. If δ is
small (large) then the experiment is uninformative
(informative), and δ signifies the SNR in an experi-
ment (by construction, the highest signal is 1.0). In our
simulation experiments, we vary SNR between 1

10
(large noise) and 10 (large signal).

3.2. Main Results
Ourmain results are shown in Figure 1. The dark gray
bars represent a setting with two competing single-
product firms, and the light gray bars represent a
setting with a monopolist jointly maximizing profits
for both products. The top panel considers the long-
run prices from our simulations. For all levels of SNR,
the long-run price when the firm is a monopoly is not
statistically distinguishable from the true monopoly
price of 0.8. With a small SNR, the long-run prices in a
duopoly are not statistically different from the Nash
equilibrium price of 0.4. However, as the SNR in-
creases, we find that the estimated duopoly price
increases to supra-competitive levels. When the SNR
levels are large, the estimated duopoly prices are
statistically different from the Nash equilibrium and,
indeed, statistically indistinguishable from the full-
information joint monopoly (collusive) outcome. This
suggests that, in markets in which pricing experi-
ments are very (less) informative, independent al-
gorithms result in long-run prices that are supra-
competitive (competitive). In Section A.2, we show
that this result is robust to a different demand sys-
tem (logit demand) and a different index algorithm
(Gittins index). Our main findings continue to hold in
both these simulations: in markets with low (high)
SNR, independent bandits result in competitive (supra-
competitive) prices.
To understand the mechanics that generate supra-

competitive duopoly prices, we consider the joint
distribution of long-run prices. Figure 2 displays the
distribution of long-run duopoly prices by SNR. Our
point of emphasis here is the shape of the distribution
and how this changes with SNR. For small SNR
values, the shape of this distribution implies inde-
pendent prices. However, as the SNR increases, the
distribution indicates correlated prices across the two
firms.10 In Section 4,we explain both the origins of this
correlation and how it impacts long-run prices.
This suggests that alternative pricing algorithms

that force no (force large) correlation in prices should
result in competitive (supra-competitive) prices across
all SNR settings. The long-run prices for such alter-
native algorithms are shown in Figure 3. The top panel
of this figure corresponds to the market outcomes
when both firms induce random price experimenta-
tion with the heuristic-based ε-greedy algorithm. In
this algorithm, at period t, with probability ε (we set ε
to be 0.01), the firm sets a randomly selected price;
otherwise, the firm sets the price with the highest
mean profits from past experiments. Consistent with
this intuition, we find the long-run prices are indis-
tinguishable from competitive Nash equilibrium pri-
ces for all levels of SNR. The bottompanel of this figure
corresponds to the market outcomes in which we
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force a correlation of one between the firms’ prices.
Here, we consider a setting in which one firm uses the
UCB algorithm for pricing (as in ourmain results) and
the other firm price-matches in real time. The compet-
itive outcomes are indistinguishable from the monop-
oly outcomes for all levels of SNR.

4. Theoretical Foundations
In this section, we explain the theoretical basis for the
preceding results. In the online appendix, Section B,
we explain the mechanism by a simple intuition for
the implication of correlated prices. This is incomplete
as the correlation of prices is endogenously generated
by the algorithm. We provide correct theoretical
foundations in a setting in which each firm chooses
between two prices, that is, K � 2.

We prove our result in a model in which each firm
only chooses between two prices, pH > pL. A firm’s

observed profit when it charges price px and its
competitor charges py, for x, y ∈ {H,L}, is πxy + ε.
Here, ε is a mean-zero shock, independently drawn
across periods. The pricing structure, therefore, im-
plies πLH > πHH and πLL > πHL; that is, charging the
low price is a dominant strategy for each firm.
However, both firms charging the high price results
in higher joint profits, that is, πHH > πLL. Putting this
together, we have that the true game for both firms is
essentially a prisoner’s dilemma.
Both firms do not know the true π; indeed, their

statisticalmodels aremisspecified in that they assume
the profit when they charge price px is πx + ε. They
both run UCB algorithms, so from each agent j’s
perspective, in any period t, the relevant part of past
play can be summarized by four numbers: for each
price px, the empirical average of profits in past pe-
riods in which px was charged, πx,t, and the number of

Figure 1. Estimated Median Prices and Percentage of Optimal Profits by Simulation Setting

Notes. The dark gray bars represent a setting in which two firms are running simultaneous algorithms, and the light gray bars represent a setting
inwhich amonopolist is jointly pricing the products. For each simulation, we consider the last 1,000 periods out of twomillion periods. In the top
chart, the dashed lines reflect the competitive equilibrium prices; the solid lines reflect monopoly prices. In the bottom chart, the dashed line
reflects 100% profit achieved. (Algorithm used: UCB tuned.)
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times it was charged, nx,t. Note that nH,t + nL,t � (t − 1)
by definition. The UCB algorithm calculates an index
for each price x ∈ {H, L} as

Ix,t � πx,t +
̅̅̅̅̅̅̅
2 ln t
nx,t

√
,

and always pulls the arm with the highest index. By
definition, the index of an arm that has never been
pulled is ∞; that is, every arm is pulled at least once
before any arm is pulled twice. It is clear from the
proofs that follow that similar results are obtained for
other “index” algorithms in which indices are de-
terministic functions of π and n.

We study this system analytically for the extreme
case in which the noise in the demand system van-
ishes; that is, demand in each period is a deterministic
function of prices. Our results for each of these cases
mirror correlated past-price intuition in Section 3.

Informally, when the noise in the demand vanishes,
we show that price paths end up correlated (even
though the algorithms are independent), and prices
converge to the (pH , pH) collusive outcome. Formally,

Theorem 1. Suppose the true demand function is deter-
ministic, and both firms use independent UCB alog-
rithms. Then,
1. The prices are always exactly correlated from the

third period onward (i.e., in any period t ≥ 3, both firms
charge either pH or pL).
2. The fraction of times in the first t periods that either

seller charges pL converges to zero as t grows large.

The proof is provided in Section A.1.
Our result is shown for the specific case of two

possible prices, deterministic demand, and when
both sellers use the UCB algorithm. These features
tmake the system feasible to study analytically. How-
ever, the mechanics of this proof and the intuition

Figure 2. 2-DDensity Plot of the Distribution of Prices for the Two FirmsAcross 500Monte Carlo (MC) Simulations per Scenario

Notes. Each chart represents a market setting described by SNR; a small SNR means large noise, and a large SNR means small noise. For each
simulation, we consider the median price charged in the last 1,000 rounds out of two million rounds. The dashed lines reflect the competitive
equilibriumprices; the solid lines reflect monopoly prices. The light gray dotted line presents the 45° line. The number on the top left of each chart
shows the median difference between the two firms’ prices, and a number on the bottom left represents the percentage of simulations with the
difference in price less than one cent. (Algorithm used: UCB tuned.)
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provided illustrate how similar phenomena should
be obtained more generally (and, indeed, why such
results are obtained in the simulations we conducted
previously). Independent algorithms can enduphaving
correlated price paths. Because the algorithms are
misspecified, this results in an omitted variable bias
(the omitted variable being the competitor’s price) and
an overestimate of own price sensitivity. The absence
of sufficiently large demand shocks to force inde-
pendent experimentation then results in this being
self-reinforcing. Both sellers’ algorithms then settle on
high prices even though this is neither the equilibrium
of the underlying game nor, indeed, even the best re-
sponse given the competitor’s strategy. When demand
shocks are small and the sellers’ algorithms are close
to deterministic, such mislearning may occur, and
the competing firms may settle on charging collu-
sive prices. This could occur forever (as in Theorem 1),

or with small amounts of noise, it may occur for ar-
bitrarily long periods or with very high probability.11

So when does such coordination fail? Demand has
to be stochastic enough to prevent both firms from
settling in to the correlated price paths displayed. It
should be clear that, with highly stochastic demand,
the early stages of experimentation under UCB are
close to independent/stochastic for many periods.
Because charging pL is a dominant strategy in the
underlying pricing game, both agents learn this, their
associated index of pL is higher, and their historical
average payoff when playing pL converges to πLL by
standard concentration inequalities. Subsequently,
the stochastic differences in their estimates of the
payoff under pH ensure that both players are unlikely
to switch to playing pH at the same time. As a result,
the historical averagewhenplaying pH fall to πHL < πLL,
and therefore, the path of play features both players

Figure 3. Estimated Median Prices by Algorithm and Level of Competition

Notes. The error bars represent the 99% confidence intervals for the estimated median across MC simulations. The dark gray bars represent a
setting in which two firms are running simultaneous algorithms, and the light gray bars represent a setting in which a monopolist is jointly
pricing the products. The top panel corresponds to firms using the ε-greedy algorithm (ε � 0.01), and the bottom panel corresponds to one firm
using UCB and the other price matching. For each simulation, we consider the median price charged in the last 1,000 period out of two million
periods. The dashed lines reflect the competitive equilibrium prices; the solid lines reflect monopoly prices. (Algorithms used: ε greedy or price
matching with UCB tuned.)
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playing the low price almost always in the limit. How
much noise/stochasticity is needed in demand to
ensure this happens with high probability is a subject
left for future research.

5. Empirical Relevance
To provide the empirical relevance of our results, we
reanalyze pricing data from Chen et al. (2016). These
data include a price tracker for best-selling products
on Amazon.com in two web crawls: from September 15
to December 8, 2014, and from August 11 to Septem-
ber 21, 2015. In each web crawl, individual sellers’
prices and ratings were collected every 25 minutes.
For each product, we define the top two sellers as
the sellers with the highest listings (defined by page
and rank within the page) with Prime shipping (to
remove variation in shipping prices and times). We
consider 830 products with variations in prices for
both sellers.

We consider two measures of interest: (1) pairwise
correlations in prices for the top two sellers over time
and (2) the relative prices of the top two sellers versus
all other sellers. For each product, we define the
relative price as the mean price for the top two sellers
minus the mean price for all other sellers. The results
are shown in top row of Figure 4. The top left chart
plots the distribution of pairwise correlations and
shows that the distribution is bimodal with modes
near zero and one. This is consistent with our simu-
lation settings, in which correlations are either near
zero (small SNR) or near one (large SNR).12 The top
right chart plots the distribution of relative prices. The
median relative price in the data is−$1.04 (the top two
sellers price is $1.04 below the average price of all
other sellers); however, there is large cross-sectional
variation across products.
To investigate the cross-sectional variation across

products, we consider a proxy for the variance in

Figure 4. Analysis of Amazon Pricing Data in Chen et al. (2016)

Notes. The left column considers pairwise correlations between the top two sellers (based on highest listings) for each product. The right column
considers prices defined as the prices for the top two sellers minus the mean price of all other sellers. The top row plots histograms to show the
distribution of the raw data. The bottom chart considers the CDF of eachmeasure by the number of new product reviews per hour (as a proxy for
demand variation). We consider the products with the lowest 25% of demand variation and all other products. The two tests performed are the
Kolmogorov–Smirnov test and the Wilcoxon–Mann–Whitney test to see if the distributions are shifted to the right for lower demand variation
(the CDF of all others lie above that of the lowest 25% demand variation).
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demand shocks (i.e., themagnitude of δ in ourmodel).
For this, we consider the variance in number of new
product reviews per day for each product. Intuitively,
if agents leave reviews at roughly the same rate, then
variance in the rate of new reviews equates to variance
in demand. The charts in the bottom row of Figure 4
plot the cumulative distribution function (CDF) for
the products with the lowest demand variation (lowest
25%) versus all other products. The bottom left chart
shows the CDF of pairwise correlations, and the bottom
right chart shows the CDF for relative prices. We ob-
serve that theCDF for productswith the lowest demand
variation is shifted to the right for both charts (statis-
tically significant for relative prices). This suggests that
the top two sellers for products with the lowest demand
variationhave (a) a higher correlation inprices over time
and (b) higher prices relative to other sellers.

Both these trends in the Amazon.com data are
consistent with our results in which we find that
markets with the higher SNR (lower noise) have the
higher correlations in prices and higher levels of
prices. Of course, because we do not observe (a) the
algorithms used by sellers on Amazon, (b) demand
for each product, and (c) supply conditions (marginal
costs) and (d) the Chen et al. (2016) data set has a
nonrandom selection of products, we do not assert
that these correlations and prices are uniquely a result
of the mechanism described in our paper.

6. Conclusion
With the growth of e-commerce, we have seen in-
creased usage of algorithms automating pricing de-
cisions. The pricing algorithm runs automated field
experiments to learn about the demand curve and
each product’s profit-maximizing price. Given the
complexity and scale of online markets, field exper-
iments typically assume firms are monopolists or
oligopolists best responding to fixed competitors’
prices. Although this assumption greatly reduces
complexity, it also results in a misspecified pricing
algorithm. In this paper, we study outcomes in an
oligopoly setting in which all competing sellers inde-
pendently use suchmisspecified algorithms for pricing.

We show that the long-run prices that result de-
pend critically on the informational value (signal-to-
noise ratio) of pricing experiments. If low, the long-run
prices are competitive and the misspecified algo-
rithms achieve nearly first-best profits. However, if
high, the long-run prices are supra-competitive. We
show that this occurs via a novel channel: competitors’
algorithms’ prices end up being correlated through
the experiments. Therefore, sellers’misspecifiedmodels
overestimate their own price sensitivity, resulting in
higher prices. We believe the identification of this
novel channel raises important new concerns for
competition policy.

In terms of future research, although we reveal a
new channel by which collusive-seeming pricing is
possible, there is much work needed to understand
how robust this finding is. For instance, our theo-
retical results investigate a stylized model in which
symmetric firms simultaneously price using the UCB
algorithm and there is no noise. What if firms set
prices asynchronously (as in Brown and MacKay
2020) or demand is not stationary (as in Keskin and
Zeevi 2017) or with price discrimination (e.g., Dubé
and Misra 2017)? How much noise is necessary to
“break” the collusion? What are the properties of
algorithms other than UCB that can sustain such
outcomes? Our simulations provide insight and in-
tuition, but a full theoretical analysis would be de-
sirable. Relatedly, although we provide indicative
evidence, it would be interesting to see if empirical
work could robustly show the existence of such
pricing patterns in the real world.
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Appendix
A.1. Proof of Theorem 1
We simulate the evolution of the UCB algorithm. By the
definition of UCB, each firm, in the first two periods, ex-
periments exactly once with each of the two prices pH and pL.
There are now exactly two possible class histories at the end
of the first two rounds:

1. Matched prices, that is, (pH, pH) in one round and
(pL, pL) in the other.

2. Mismatched prices, that is, (pL, pH) in one round and
(pH, pL) in the other.

We consider each of these in turn.

A.1.1. Case 1: Matched Prices Note that, at the end of the
first two periods, the “state”13 of each firm’s algorithm can
besummarizedas (πHH, 1, πLL, 1). To see part (1) of Theorem 1,
note that the algorithms and demand system are determin-
istic, and both firms’ algorithms share a common state
at the end of period 2. Therefore, the firms take the same
action in period 3 and then, inductively, in every subse-
quent period.

Now πHH > πLL, and both firms charge the high price as
long as

πHH +
̅̅̅̅̅̅̅
2 ln t
t − 2

√
> πLL +

̅̅̅̅̅̅̅
2 ln t

√

Or, πHH − πLL >
̅̅̅̅̅̅̅
2 ln t

√
1 − 1̅̅̅̅̅̅

t − 2
√

( )
.

Note that, for some t large enough, this inequality is vio-
lated (as the right-hand side is strictly increasing in t and
the left-hand side is constant); however, because demand is
deterministic, it is violated at the same time for both firms.
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At such t, both firms switch to charging pL. In period t + 1,
the state of both firms’ algorithms is, therefore, (πHH ,
(t − 2), πLL, 2). However, because (1) pH was chosen in t − 1
and (2) the exploration bonus decreases with the number of
attempts,14 we must have

πHH − πLL >
̅̅̅̅̅̅̅̅̅̅̅̅̅
2 ln t + 1( )√ 1̅̅

2
√ − 1̅̅̅̅̅̅

t − 2
√

( )
.

In other words, both firms immediately switch back to
charging pH. Further, both firms charge pL for the nth time in
period tn subject to

πHH − πLL <

̅̅̅̅̅̅̅̅̅̅
2 ln tn( )
n − 1

√
−

̅̅̅̅̅̅̅̅̅̅
2 ln tn( )
tn − n

√
.

Therefore, n cannot be larger than O(ln tn) as it grows large.
As a result n

tn
goes to zero as n grows large.

A.1.2. Case 2: Mismatched Prices As in case 1, at the end
of the first two periods, the two firms share a common state,
(πHL, 1, πLH, 1). As a result, bothfirms take the same action in

period 3 and then, inductively, in every subsequent period.
This shows (1) of Theorem 1.

Consider any subsequent period in which both firms
have charged the high price nH times and the low price nL
times. The corresponding indices in period t � nH + nL + 1
are

IH,t � 1
nH

πHL + nH − 1
nH

πHH

( )
+

̅̅̅̅̅̅̅
2 ln t
nH

√

IL,t � 1
nL

πLH + nL − 1
nL

πLL

( )
+

̅̅̅̅̅̅̅
2 ln t
nL

√
.

Observe that the first term of the first equality is increasing
to πHH as nH grows large, and the first term of the second is
decreasing toπLL. Part (2) of Theorem1 now follows froman
analogous argument to that presented. □

A.2. Robustness
Figure A.1 shows robustness to the specific algorithm in the
main paper. (1)We show that our results are robust to using
the UCB untuned (Auer et al. 2002) and the number of

Figure A.1. Estimated Median Prices by Algorithm and Level of Competition

Notes. The error bars represent 99% confidence intervals for the estimatedmedian across MC simulations. The dark gray bars represent a setting
in which two firms are running simultaneous algorithms, and the light gray bars represent a setting in which a monopolist is jointly pricing the
products. For each simulation, we consider themedian price charged in the last 1,000 rounds out of 10million rounds. The dashed lines reflect the
competitive equilibrium prices; the solid lines reflect monopoly prices. (Algorithm used: UCB tuned.)
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rounds to run the algorithm. (2) The UCB is based on a finite
time analysis of the MAB problem and requires an ex ante
specification of number of rounds. In this figure, we run the
algorithm for 10 million rounds to show the robustness of
our results. The results are statistically indistinguishable
from the main results in Figure 1.

The UCB index for the online appendix is given by

UCB-untunedkt � π̄kt +
̅̅̅̅̅̅̅̅
2 log t
nkt

√
.

In the top panel of Figure A.1, we show that our results
are robust to considering theUCB-untuned algorithm.Note
that, consistent with the prior literature (including in Auer
et al. 2002), the untuned version of the algorithm takes
longer to converge and requires a larger number of rounds

(10million). In the bottompanel of FigureA.1, we show that
our results are robust to considering 10 million rounds with
the UCB-untuned algorithm (as opposed to two million in
the main paper).

Figure A.2 shows the robustness of our results in two
ways. First, we consider a different demand system (logit
demand system). Second, we use a different MAB index
algorithm (Gittins index). Our main findings (see Figure 1)
are replicated in both these simulations: markets with
low (high) SNR, independent bandits result in competitive
(supra-competitive) prices.

Endnotes
1Please see https://newsroom.spotify.com/company-info/.
2Please see https://www.scrapehero.com/number-of-products-on
-amazon-april-2019/.

Figure A.2. Estimated Median Prices by Algorithm and Level of Competition

Notes. Gittins (1979): linear demandmodel using the closed-formGittins index as suggested in Brezzi and Lai (2002); we assume a beta prior and
approximate the profit as an aggregate binomal distribution. Note that this algorithm converges faster thanUCB, and hence, we consider 200,000
rounds. Logit demand model: uj � 4.1 − 4.74pj + εj for j ∈ {1, 2} with an outside option u0 � ε0 with ε i.i.d. type 1 extreme value. Under this
demand system, the Nash equilibrium price PD � 0.4 and the monopoly price PM � 0.8. The error bars represent 99% confidence intervals for the
estimated median across MC simulations. The dark gray bars represent a setting in which two firms are running simultaneous algorithms, and
the light gray bars represent a setting in which a monopolist is jointly pricing the products. For each simulation, we consider the median price
charged in the last 1,000 rounds in each MC. The dashed lines reflect the competitive equilibrium prices; the solid lines reflect monopoly prices.
(Algorithm used: Gittins index and UCB tuned.)
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3Please see https://www.cnn.com/2019/01/17/media/netflix-earnings
-q4/index.html.
4See section 4 of den Boer (2015) for a more complete overview of
dynamic monopoly pricing with unknown demand. We discuss this
literature in more detail in the online appendix.
5An implication is that, even if the seller is a monopolist, the limit
price need not converge to the correct optimal price if the assumed
linear demand is incorrect. The UCB algorithm used in our paper
considers (undiscounted) dynamic profits without making para-
metric demand assumptions.
6For an overview, see Sutton and Barto (1998). For applications in
similar settings, see Hauser et al. (2009) for a marketing application
and Misra et al. (2019) for pricing.
7In Section A.2, we show that our results are robust to considering the
untuned version (Auer et al. 2002) called UCB1. Note that the tuned
version is shown to have better empirical performance; for example,
see Auer et al. (2002) (general) or Misra et al. (2019) (application to
demand learning). We also show that our results are robust to other
index algorithms, namely the Gittins index (Gittins 1989, Brezzi and
Lai 2002).
8In a setting with infinite time, there is no trade-off between learning
and earning as, once found, the best arm is played for an infinite time.
9To check robustness, in Section A.2, we present results when the
number of periods is increased to 10 million. Our results are statis-
tically indistinguishable from those presented in the main paper.
10Numerically, we can see this as the decrease in the median dif-
ference between the two firms’ prices (top left of the chart); this
decreases from 0.15 to 0.00. Alternatively, we consider the percentage
of simulations in which resultant prices are within one cent of each
other (bottom left of chart). Again, we see this number increase from
3% in the low-SNR setting to 69% in the high-SNR setting. This
suggests that the signal strength of experiments is critical to coor-
dinating prices across different algorithms.
11Consistent with this intuition, in the online appendix, we show a
simulation in which we allow demand shocks to increase or decrease
by round and show our results are robust, further suggesting the
importance of initial noise to make the algorithms uncorrelated.
12We investigate high correlations resulting from sellers identified as
“algorithmic competitive sellers” in Chen et al. (2016). We find that
seller pairs with no identified sellers have a highermedian correlation
(0.54) than seller pairs with one (0.22) or two (0.14) identified sellers.
This suggests that the higher correlations are not a result of algo-
rithmic competitive sellers.
13The state variables are (1) average profits for priceH, (2) the number
of times price H has been charged, (3) average profits for price L,
and (4) the number of times price L has been charged.
14Formally, (1) πHH − πLL >

̅̅̅̅̅̅̅̅̅̅̅̅̅
2 ln(t − 1)√ (1 − 1̅̅ ̅̅

t−3√ ), and (2)
∂( 1̅

x
√ − K̅̅ ̅

x+1√ )
∂x < 0,

∀K<1.
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